
Aurora Vision Library 5.3

Getting Started

Created: 6/8/2023

Product version: 5.3.4.94078

adaptive-vision.com

Table of content:

SDK Installation

Project Configuration

Using Library with CMake

https://www.adaptive-vision.com

This is just a placeholder to silence warnings about broken link.

SDK Installation

Requirements

Aurora Vision Library is designed to be a part of applications working under control of the Microsoft Windows operating system. Supported versions

are: 7, 8 and 10, as well as the corresponding embedded editions.

To build an application using Aurora Vision Library, Microsoft Visual Studio environment is required. Supported versions are: 2015, 2017 and 2019.

Aurora Vision Library can be also used on Linux operating system with GCC compiler - for details consult Using SDK on Linux article.

Running the Installer

The installation process is required to copy the files to the proper folders and to set the environment variables used for building applications using

Aurora Vision Library.

After the installation, a license for Aurora Vision Library product has to be loaded. It can be done with the License Manager tool available in the Start

Menu.

To verify that the installation has been successful and the license works correctly, one can try to load, build and run example programs, which are

available from the Start Menu.

SDK Directories

Aurora Vision Library is distributed as a set of header files (.h), dynamic (.dll) and static (.lib) libraries. The libraries (static and dynamic) are provided

in versions for 32-bit and 64-bit system. The header files are common for both versions.

The picture below shows the structure of the directories containing headers and libraries included in Aurora Vision Library.

Library Architecture

Aurora Vision Library is split into four parts:

1. Aurora Vision Library - contains all functions for working with images.

2. Standard Library - contains all auxiliary functions like: file operations, XML editing or mathematical operations.

3. GenICam Library - contains all GenICam and GigEVision functions.

4. Third Party Library - contains functions of third-party hardware producers.

The usage of the library is possible only when including one of the following header files:

AVL.h

The directories (installed in the Program Files system folder) being a part of Aurora Vision Library are

shortly described below.

atl_visualizers – a directory containing the visualizers for Microsoft Visual Studio Debugger of

Aurora Vision Library data types.

bin – a directory containing dynamic linked library files (AVL.dll) for 32|64-bit applications. The

libraries are common for all supported versions of Microsoft Visual Studio and for
Debug|Release configurations. All the functions of Aurora Vision Library are included in the
AVL.dll file.

Documentation – a directory containing the documentation of Aurora Vision Library, including

this document.

include – a directory containing all header (.h) files for Aurora Vision Library. Every source code

file that uses Aurora Vision Library needs the AVL.h header file (the main header file) to be
included.

lib – a directory containing static (.lib) libraries (AVL.lib) for 32|64-bit applications. The AVL.lib

file has to be statically-linked into the program that uses Aurora Vision Library. It acts as an
intermediary between the usage of Aurora Vision Library functions and the AVL.dll file. The
programmer creating an application does not need to bother about DLL entry points and
functions exported from the AVL.dll file. Aurora Vision Library is designed to be easy to use, so
one only needs to link the AVL.lib file and can use all the functions from the AVL.dll just as easy
as local functions.

tools – a directory containing the License Manager tool helping the user to load the license for

Aurora Vision Library to the developer's computer.

Examples – a directory located in the Public Documents system folder (e.g.

C:\Users\Public\Documents\Aurora Vision Library 5.3\Examples on

Windows Vista/7) containing simple example solutions using Aurora Vision Library. The
examples are a good way of learning, how to use Aurora Vision Library. They can be used as a
base for more complicated programs as well. The shortcut to the Examples directory can be
found in the Start Menu after the installation of Aurora Vision Library.

https://docs.adaptive-vision.com/5.3/avl/getting_started/LibraryOnLinux.html

STD.h

Genicam.h

ThirdPartySdk.h

Environment and Paths

Aurora Vision Library uses the environment variable named AVL_PATH5_3 (5_3 stands for the 5.3 version) in the building process. The variable

points the directory with the headers and libraries needed in the compile time (.h files and AVL.lib) and in the run time (AVL.dll). Its value is typically

set to C:\Program Files (x86)\Aurora Vision\Aurora Vision Library 5.3, but it can differ in other systems.

The projects using Aurora Vision Library should use the value of AVL_PATH5_3 to resolve the locations of the header files and statically-linked

AVL.lib file. Using an environment variable containing path makes the application source code more portable between computers. The

AVL_PATH5_3 path is typically used in the project settings of the compiler (Configuration Properties | C/C++ | General | Additional Include

Directories) to find the header files, settings of the linker (Configuration Properties | Linker | General | Additional Library Directories) to find the proper

version of the AVL.lib and in the configuration of Post-Build Event (Configuration Properties | Build Events | Post-Build Event | Command Line) to

copy the proper version of the AVL.dll file to the output directory of the project. All the settings can be viewed in the simple example applications

distributed with Aurora Vision Library.

Project Configuration

General Information

Aurora Vision Library is designed to be used as a part of C++ projects developed with Microsoft Visual Studio in versions 2015-2019.

Creating a New Project

Microsoft Visual Studio 2015, 2017 and 2019

Aurora Vision Library is provided with a project template. To create a new project using Aurora Vision Library, start Microsoft Visual Studio and

choose the File | New | Project... command. The template called AVL 5.3 Project is available in the tab Installed | Templates | Other Languages |

Visual C++.

Required Project Settings

All projects that use Aurora Vision Library need some specific values of the compiler and linker settings. If you want to use the Library in your existing

project or you are manually configuring a new project, please apply the settings listed below:

Configuration Properties | General

Character Set should be set to Use Unicode Character Set.

Configuration Properties | C/C++

General

Additional Include Directories should contain the $(AVL_PATH5_3)\include\ path.

Configuration Properties | Linker

General

Additional Library Directories should contain the proper path to directory containing the AVL.lib file. The proper path is

$(AVL_PATH5_3)\lib\$(PlatformName)\ .

Input

Additional Dependencies should contain AVL.lib file.

Configuration Properties | Build Events

Post-Build Event

Command Line should contain copy "$(AVL_PATH5_3)\bin\$(PlatformName)\AVL.dll" "$(OutDir)" call. This

setting is not mandatory, but the application using Aurora Vision Library requires an access to the AVL.dll file and this is the
easiest way to fulfill this requirement.

Including Headers

Every source code file that uses Aurora Vision Library needs the #include <AVL.h> directive. A proper path to the AVL.h file is set in the settings

of the compiler (described above), so there is no need to use the full path in the directive.

Distributing Aurora Vision Library with Your Application

Once the application is ready, it is time for preparing a distribution package or an installer. There are two requirements that needs to be fulfilled:

The final executable file of the application needs to have access to the proper version (used by Win32 or x64 configuration) of the AVL.dll file.
Typically, the AVL.dll file should be placed in the same directory as the executable.

The computer that the application will run on needs a valid license for the use of Aurora Vision Library product. Licenses can be managed with
the License Manager application, that is installed with Aurora Vision Library Runtime package.

A license file (*.avkey) can be also manually copied to the end user's machine without installing Aurora Vision Library Runtime. It must be
placed in a subdirectory of the AppData system folder. The typical location for the license file is
C:\Users\%USERNAME%\AppData\Local\Aurora Vision\Licenses. Remember that the license is valid per machine, so every

computer that runs the application needs a separate license file.

Alternatively to the (*.avkey) files we support USB Dongle licenses.

Using Library with CMake

Library ships with CMake configuration modules. It makes the project portable, and easy to compile for Windows, linux or Android. The minimum

CMake version supported is 3.10 (for example shipped with Ubuntu bionic/18.04)

Quick Start

A simple template for CMakeLists.txt is presented below:

cmake_minimum_required(VERSION 3.10)

project(example)

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

copy binaries to build directory

copy_avl()

add_executable(

 # executable name

 example_exec

 # source files

 main.cpp

)

target_link_libraries(

 example_exec

 PUBLIC

 AVL

)

install user executable

install(TARGETS example_exec)

install ALL AVL libraries

install_avl()

One can also copy one of the CMake examples, and modify to your needs. For further cmake use refer to online documentation. Be aware that
ubuntu 18.04 is the baseline distribution, so minimal CMake version is 3.10

Reference

package

CMake package is provided for windows installer and linux archive. Both should be usable after installation. Linux additionally ships with Android

libraries. The library is only discoverable using CONFIG mode, so it's sensible to restrict find_package to that mode.

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

On Android to use system installed AVL it is necessary to add CMAKE_FIND_ROOT_PATH_BOTH argument:

find_package(AVL CONFIG REQUIRED CMAKE_FIND_ROOT_PATH_BOTH)

Possible packages:

AVL - full library

AVL_Lite - lite library

Weaver - deep learning inference library

https://cmake.org/documentation/

install_avl

Install all AVL libraries when executing make install or ninja install or building INSTALL project in Visual Studio. It accepts a LIB

argument to override default installation directory. It requires find_package(AVL...) call first.

find_package(AVL CONFIG REQUIRED)

install_avl()

By default it installs to ${CMAKE_INSTALL_PREFIX}/bin on Windows and ${CMAKE_INSTALL_PREFIX}/lib on Linux. When provided the LIB

argument it installs to ${CMAKE_INSTALL_PREFIX}/${LIB_ARGUMENT}

install_avl(LIB "avl_directory")

Possible variants:

install_avl()

install_avl_lite()

install_weaver()

copy_avl

Copy all AVL libraries when compiling targets that depend on AVL to binary directory. By default it's ${CMAKE_BINARY_DIR} or

${CMAKE_BINARY_DIR}/$<CONFIG> on Windows. It requires find_package(AVL...) call first.

find_package(AVL CONFIG REQUIRED)

copy_avl()

Possible variants:

copy_avl()

copy_avl_lite()

copy_weaver()

Using Library on Linux

Requirements

Aurora Vision Library is designed to be used with GCC compiler on Linux x86_64, embedded ARMv7-A and ARMv8-A systems. Currently gcc in

version 5.4 is supported, and corresponding toolchains for embedded linux: arm-linux-gnueabihf-, aarch64-linux-gnu-. Custom build

can be prepared upon the earlier contact with Aurora Vision team. The Aurora Vision Library is distributed as .tar.gz or .tar.xz archive. The

library is compatible with Debian-like system, including - but not limited to - Ubuntu distributions.

Common prerequisites

Properly set locale on target computer is important. Non-existing locale will cause bugs and bad behavior. To list locale that exists on your computer

use: locale -a, and currently set: locale. Remember that running your application as daemon (e.g. from systemd) may set different locale,

than the one in your user terminal. Refer to your Linux distribution documentation.

To build example in simple manner, GNU Make tool and CMake is needed.

Ubuntu 18.04/Debian 9 or newer:

Runtime:

package libc6 ≥ 2.23

package libudev1 ≥ 229

Development:

package g++ version ≥ 5.4

package make

package cmake version ≥ 3.10

sudo apt-get install cmake make g++

Examples:

sudo apt-get install libgtk-3-dev libsdl-dev qtbase5-dev

CentOS 8/Fedora 29/OpenSUSE 15.0 or newer:

Runtime:

package glibc ≥ 2.23

package systemd ≥ 229

Development:

package gcc-c++ version ≥ 5.4

package make

package cmake version ≥ 3.5

CentOS/Fedora: dnf install gcc-c++ make cmake

OpenSUSE: zypper install gcc-c++ make cmake

Examples:

CentOS/Fedora: dnf install SDL2-devel qt5-qtbase-devel gtk3-devel

OpenSUSE: zypper install libSDL2-devel libqt5-qtbase-devel gtk3-devel

Generic:

Runtime:

libraries libc.so.6, libpthread.so.0, libm.so.6, libdl.so.2, librt.so.1, libgcc_s.so.1 from glibc version ≥ 2.23 or compatible (i.e. musl
libc)

library libudev.so.1 from systemd version ≥ 229

Supported input devices

Vendor x86_64 armv7-a armv8

ximea ✔ ✔ ✔

Allied Vision Vimba ✔ ✔ ✔

Basler Pylon ✔ ✔ ✔

LMI Gocator ✔ ✔ ✔

Installation instructions

In unpacked directory call the install script. In example: sudo ./install This command will install the library to a proper directory in opt. It will

also make the library visible to CMake find_package command.

Compilation instructions

Directory structure

Unpacked directory consists of following entries:

examples/ - directory contains source files of example programs written with Aurora Vision Library

include/ - this directory contains library header files

lib/ - here the .so file with library is stored, along with any kits

bin/ - directory for additional binaries, like Licensing tool.

/README - instruction of library usage

/sha512sum - checksums for all files in archive, check with sha512sum --quiet -c sha512sum

/metadata.json - file containing information about the optimal target system, and library version

/install - installation script

/uninstall - uninstall script, will be copied to installation directory, where it can be safely used

Compilation

Using CMake

CMake is the recommended way to compile on linux, see documentation Using Library with CMake

Using Makefile or your custom build system

For compiling with Aurora Vision Library please remember to:

add the include/ subdirectory to the compiler include directories: -I switch

add the lib/ subdirectory to the linker directories: -L switch

link with Aurora Vision Library: -lAVL

use -rpath in linker options, LD_LIBRARY_PATH or LD_PRELOAD of libAVL.so file.

link with dependencies: -lpthread -lrt -ldl

One can consult makefile in the examples/ directory to see how to compile and link with Aurora Vision Library.

Known compilation bugs

In case of the following linker errors: (or similar)

/usr/bin/ld: warning: libiconv.so, needed by lib/libAVL.so, not found (try using -rpath or -rpath-link)

lib/libAVL.so: undefined reference to `libiconv'

lib/build/libAVL.so: undefined reference to `libiconv_close'

lib/build/libAVL.so: undefined reference to `libiconv_open'

It is a known gnu linker bug, affecting versions older than 2.28 (e.g. in Ubuntu 16.04).
To solve the problem you can:

Try a different linker (add for linking -fuse-ld=gold for gold or -fuse-ld=lld, consult your linux distribution manual)

Link with the missing library (for example add -liconv)

Update the linker (binutils 2.28 or newer)

Licensing and distribution

Licensing

File based licenses are supported on all Linux platforms. Dongle licenses depend on CodeMeter runtime. Currently Codemeter runtime is available

for x86_64 and ARMV7-A. To develop and debug programs written with Aurora Vision Library, Library license has to be present. To run compiled

binaries linked with Aurora Vision Library, LibraryRuntime license has to be present.

One can use license_manager from bin/ directory to list currently installed file or dongle licenses: license_manager list

Red marked licenses are invalid, for example past the license date or installed license for the wrong machine (bad ID)

https://docs.adaptive-vision.com/5.3/avl/getting_started/CMake.html

File License

To obtain license:

In a terminal, on the target machine run license_manager --id from bin/ directory

Copy the printed Computer ID

Use that Computer ID to get a .avkey file from User Area on www.adaptive-vision.com website.

Download the key to the target machine

Install the license by one of the following methods:

Run in terminal license_manager install downloaded_file.avkey (Recommended)

Copy the .avkey file next to executable, that is using Aurora Vision Library

Dongle License

Installed CodeMeter Runtime is required, as well as proper license available on plugged in dongle.

Download runtime package from WIBU website, section "CodeMeter User Runtime for Linux".

"Driver Only" (lite) version recommended for headless (no desktop GUI) installations. ARMV7-A is available under "CodeMeter User Additional

Downloads" as "Raspberry PI" version

Distribution

To distribute program with Aurora Vision Library, one have to provide license (file or dongle - depending on system used) and the libavl.so. To

provide the .so file, one can install SDK on target machine, but this will provide headers etc., which may be unwanted. In such case, the library file,

with any used kits should be copied to suitable system directory, or the program has to be compiled with -rpath and relative path to the .so file.

Third option is to provide a boot script, which will set LD_LIBRARY_PATH or LD_PRELOAD with libavl.so location.

Program development - general advise

The most convenient way to make programs with Aurora Vision Library for Linux is to develop vision algorithm using Aurora Vision Studio on

Windows and then generating C++ code. This code can be further changed or interfaced with rest of the system and tested on Windows. Then,

cross-compiler can be used to prepare Linux build, which will be provided to target machine. It is easy to organize work this way, because:

developing vision algorithm using plain C++ is hard, troublesome and error prone, but Aurora Vision Studio makes it easy,

programs written with Aurora Vision Library on Windows can be easily debugged using Microsoft Visual Studio thanks to provided debug
visualizers and the Image Watch extensions to Microsoft Visual Studio,

cross compilation using virtualization solution, like Vagrant, is easy and fast, and does not force developer to use two systems simultaneously.

Of course, the programs can be also developed on Linux machine directly. Then a dose of work should be put into writing good Makefile.

Debugging can be done by GDB, but we do not provide debug symbols for Aurora Vision Library.

Runtime considerations

Some architectures might impose restrictions on libavl code. In this section we present pitfalls the user should be aware of.

Homogeneous Multiprocessor/SMP

There are many identical cores. One might have a problem when cores span across multiple physical CPUs, frequent on servers. The CPU's don't

share CPU cache, so when execution of thread from CPUx/COREa is moved to CPUy/COREb, cache needs to be updated. It imposes time penalty.

A workaround would be to pin threads to specific cores, (set affinity) or limit execution of libavl to specific number of cores on one physical CPU.

use taskset linux command to limit execution on specific cores

use OMP_PROC_BIND=TRUE environment variable to bind threads to cores they started on

Heterogeneous Multiprocessor

There are different kinds of processors the code runs on. Some examples are ARM big.LITTLE architecture, (where the cores mainly differ in

maximum speed), or Tegra TX2 (where the cores serve different purpose). This kind of architecture might also suffer from Homogeneous

Multiprocessor problems, but might suffer from different set of problems. One have to consider the cores are designed for low power and high

performance, single threaded multithreaded optimized. Use the same solutions as in previous point, just take into account what type of algorithm will

be executed.

Tegra TX2

This CPU is an example of Heterogeneous Multiprocessor architecture. It comprises of 6 cores: 2 Denver2 4 Cortex-A57. Denver2 core is designed

for single thread performance, while Cortex-A57 for multithreaded. One can use both, but with thread binding, so threads are executed on the cores

they started on. Limiting to one type of core might be beneficial when power consumption is a factor. Remember that thread binding might bind your

application to core you did not want to use. Core 0 is Cortex-A57, core 1 and 2: Denver2, and cores 3-5: Cortex-A57. Core 0 is always active.

https://www.wibu.com/support/user/downloads-user-software.html

This article is valid for version 5.3.4

©2007-2023 Aurora Vision

https://www.adaptive-vision.com/

	Aurora Vision Library 5.3
	Getting Started

	SDK Installation
	Requirements
	Running the Installer
	SDK Directories
	Library Architecture
	Environment and Paths

	Project Configuration
	General Information
	Creating a New Project
	Microsoft Visual Studio 2015, 2017 and 2019

	Required Project Settings
	Including Headers
	Distributing Aurora Vision Library with Your Application

	Using Library with CMake
	Quick Start
	Reference
	package
	install_avl
	copy_avl

	Using Library on Linux
	Requirements
	Common prerequisites

	Supported input devices

	Installation instructions
	Compilation instructions
	Directory structure
	Compilation
	Using CMake
	Using Makefile or your custom build system
	Known compilation bugs

	Licensing and distribution
	Licensing
	File License
	Dongle License

	Distribution

	Program development - general advise
	Runtime considerations
	Homogeneous Multiprocessor/SMP
	Heterogeneous Multiprocessor
	Tegra TX2

